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ABSTRACT 

A finite-difference technique useful for certain computations of hypersonic gas flows, 
with or without diffusion normal to the mean flow streamlines, is described. The scheme 
operates in the natural or intrinsic coordinate system and marches downstream from 
an input surface normal to the flow streamlines. The mesh is constructed by extending 
the streamlines according to the pressure distribution on the last available surface. The 
technique is explicit, and the usual stability restrictions on the stepping distance apply. 
Shock waves must generally be treated as discontinuties, although one can march through 
weak shocks with small loss of accuracy. Applications have been made to nozzle flows, 
to exhaust plumes, and to flows around bodies. 

This paper describes a finite-difference technique for solving steady, supersonic 
gas flow problems in two space dimensions. The technique is essentially a Lagran- 
gian method, although it differs from the Lagrangian difference schemes previously 
reported in that fluid elements are followed through space rather than through 
time. 

In the usual Lagrangian technique, the problem is treated by dividing the flow 
into elements at some initial time, and the subsequent motion and distortion of 
these elements is followed by marching along a time coordinate. This technique is 
easily applied [I, 21 to flow problems in one space dimension; however, when two- 
dimensional problems are attempted, problems often arise. If the fluid undergoes 
large distortion, as it might when velocities differ appreciably in the region of 
interest, the contortion of the fluid elements causes the differencing procedures 
which were adequate for the undistorted flow to become less accurate [3]. In the 
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present method, only the steady-state flow field is considered, and the marching 
is done along a space coordinate. Initial-value problems in this sense are properly 
posed if the gas is supersonic and if viscous stresses in the marching direction are 
negligible. We express the equations of motion in the natural or instrinsic coordin- 
ate system defined by the flow streamlines and the lines or surfaces normal to them. 
(These normal surfaces are potential surfaces in irrotational flow.) The calculation 
marches downstream, extending the streamlines and constructing new normal 
surfaces as it goes. Viscous transport normal to the streamlines is included. The 
technique is a fairly straightforward extension of the one-dimensional time- 
dependent techniques, but it does not appear to have received much attention in 
the past. Presumably, this lack of attention can be attributed to the widespread 
applicability of the method of characteristics, which in principle treats the same 
class of problems. 

Our method was developed in order to compute the flow fields of rocket exhaust 
plumes at high altitudes (Fig. 1). The method of characteristics exhibits computa- 
tional difficulties under these conditions, because the flow streamlines diverge and 
the Mach number is high. Characteristics of opposite family will eventually diverge 
unless the mesh size is refined, and the calculation cannot be carried to great 
distances from the nozzle in an efficient manner. In the shock layer which develops 
between the exhaust plume and the atmosphere, viscous mixing of the two streams 
take place. Since the shock layer is long and thin, viscous transport terms along the 
flow streamlines are small with respect to convective terms and can be neglected. 
Normal viscous transport should be included, as must the pressure differences 
required to turn the exhaust gases back along the flow centerline. In order to 
treat these flows, which involve large gradients normal to the streamlines, with a 

FIG. 1. High altitude exhaust plume flow field (schematic). 
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reasonable expenditure of computer time, it is desirable to employ techniques 
which converge rapidly to an acceptable solution as the number of mesh points is 
increased. The approach taken here is to embody as many of the conservation 
laws as possible in finding a solution, with the idea that if these fundamental 
relations are always satisfied the solution at least can never be unreasonable, and 
should generally be a satisfactory (if in some instances a coarse) representation of 
the real flow. 

Because of the nature of the exhaust flow, where the structure inside the jet 
shock is identical to that which develops without any atmospheric interactions, it 
proves more convenient to compute the internal flow and the shock layer as two 
separate flows. The shocks are treated as discontinuities along the boundaries of 
the shock layer, and the jump conditions, together with the properties of the undis- 
turbed exhaust and atmosphere, give the conditions just inside the boundaries. In 
this fashion the plume of a particular engine can be computed at several altitudes 
without repeating the internal undisturbed flow calculation and without introducing 
the complicated logic needed to treat the shock as an internal discontinuity. For 
this reason, as well as because some cursory attempts did not appear promising, 
there has been no extensive effort explicitly to introduce an “artifical viscosity” 
into the difference scheme. 

We have applied the method to high-altitude exhaust plume calculations, to 
low-altitude plumes, to nozzle flows, and to flows around supersonic bodies. 
Exemplificative calculations for several of these flows are shown in a later section. 

The natural coordinate system has several advantages: 
1. in the limiting case of very large Mach number, the procedure reduces to 

the condition that the streamline curvature vanishes, and the solution is obtained 
trivially; 

2. conservation equations may be used in integrated form (in inviscid flow), 
so that they are rigorously satisfied for any mesh spacing; 

3. chemical reactions or internal relaxations may be easily incorporated, since 
the calculation follows fluid elements; 

4. slip lines and large variations in fluid properties normal to the flow direction 
are treated without difficulty; 

5. a wide variety of boundary conditions are easily accommodated; 
6. species diffusion, shear, and heat transfer normal to the streamlines (the 

“thin viscous layer” approximation) are easily included; 
7. since the calculation always marches in the flow direction, the difficulties 

encountered by Eulerian techniques when the flow direction and the marching 
direction differ appreciably are avoided. 

The system also has some disadvantages: 
1. methods based on it are generally of modest formal accuracy; 
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2. wave phenomena and their interactions are not as precisely defined as in 
the method of characteristics; 

3. effects involving small portions of the total mass flow are not resolved unless 
the mesh size is made small in these regions; 

4. because the mesh points must be located at each step, the procedure is less 
efficient than an Eulerian scheme with equivalent resolution. These advantages 
and disadvantages are common to Lagrangian techniques. 

DEVELOPMENT OF THE DIFFERENCE SCHEME 

Consider the two-dimensional or axially symmetric flow of a nonreacting, 
viscous, heat-conducting, multicomponent fluid in which variations in velocity, 
temperature, and species concentrations are much larger in the direction normal to 
the flow than along it. Practical examples of such flows are the high-altitude shock 
layers of hypersonic vehicles [4] or exhaust plumes [S]. We write the equations 
describing this flow in the natural coordinate system (s, y) consisting of the flow 
streamlines and the surfaces normal to them, as follows: 

Continuity: &(puA) = 0; (1) 

Species Conservation: (2) 

Streamwise Momentum: (3) 

Normal Momentum: 

p~-$h++u~)=r-~-& rs zm+q+~hiJi 
[ ( i II . (5) 

Here s is the distance along a streamline, y the distance normal to it; p the density, 
u the velocity, A the area of an infinitesimal streamtube, ci the mass fraction of 
the i th species, Ji the mass flux of that species, P the pressure, T the normal shear 
stress, y the flow angle with the reference plane or symmetry axis, h the specific 
enthalpy, q the normal heat flux, and hi the partial specific enthalpy of the i th 
species. The flux terms should be understood to represent fluxes across the flow 
streamlines. The metric r is the distance normal to the reference plane or symmetry 
axis, and 6 = 1 for axially symmetric flow and 8 = 0 for two-dimensional flow. 

The continuity equation can be integrated along streamlines to give 

puA = k(y) = constant, 

where ti is the mass flow in a particular streamtube. 

(6) 
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The species continuity and energy equations may be similarly integrated if the 
flow is inviscid, giving 

h + $.4z = H(y) = constant, 

where H is the total enthalpy, and 

q(y) = const. (8) 

Furthermore, by use of the thermodynamic relation dh = TdS + dP/p, the 
streamwise momentum equation may be integrated (so long as we do not cross 
shocks) to give 

where S is the entropy. 

S(y) = constant, (9) 

Together with the equation of state, Eqs. (6)-(9) allow one to determine all the 
state variables once the streamlines have been located and the streamtube areas 
defined. This information is obtained from Eq. (4), which gives the streamline 
curvature, and thus in inviscid flow the truncation errors are limited to those 
introduced in handling the normal momentum equation. When the flow is viscous, 
the streamwise momentum, species conservation, and energy equations can no 
longer be integrated and must be treated in differential form; additional truncation 
errors may thus arise through the flux terms. 

In formulating the finite-difference procedure, an effort has been made to retain 
a physically meaningful interpretation even when the mesh sizes are sufficiently 
large that the relation between derivatives and differences is somewhat obscure. 
For this purpose a Lagrangian coordinate system offers several advantages over an 
Eulerian system for evaluating hypersonic flow fields, even though it is often more 
complex and less efficient in terms of computing time per mesh point. In inviscid 
flow, the integrated forms of Eqs. (6), (7), an d sometimes (9) are used, so that these 
are rigorously satisfied no matter how large a step size is used. When the flow is 
viscous, the calculation is arranged so that an increase of energy, momentum or 
species content in one streamtube is exactly balanced by losses in adjacent tubes, 
and thus the integrated relations are always satisfied over the entire flow. 

The finite-difference procedure is set up as follows: The flow is divided into a 
finite number of streamtubes. Initial data, consisting of the local streamtube 
properties and the coordinates of the dividing streamlines, are fed in along an 
orthogonal surface. The calculation marches downstream, predicting the flow 
properties on a new orthogonal surface using the properties of the last previously 
calculated surface plus the boundary condition at each edge of the surface. The 
curvature K~,~ = +/as of the kth streamline at the point where it intersects 
the 8th surface is evaluated from the normal pressure gradient determined from 
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FIG. 2. Construction of flow field (interior zone); ---, trial; -, final. 

the pressures in the adjacent streamtubes (k and k + 1, k - 1 and k) on the &h 
surface (see Fig. 2). This curvature is used to extend the kth streamline to the 
(8 + 1)st surface. This procedure is repeated for each streamline. With the stream- 
tube areas thus determined on the surface G + 1, the state variables in each tube 
are evaluated from the conservation equations. When the flow is viscous, the fluxes 
of momentum, heat, and species are evaluated at the Ah surface or halfway between 
surfaces 8 and 8 + 1 for use in determining the changes in ci , H, and momentum 
between the &h and (c! + 1)st surface. 

It is known that the straightforward application of this marching procedure is 
unconditionally unstable even in inviscid flow. However, it may be rendered stable 
by the following procedure: Having determined the state properties on the (I + 1)st 
SUrfaCe, the curvature K~,~+~ of the kth streamtube is evaluated from the pressure 
gradients on this surface. The surface (8 + 1) is then recalculated using the weighted 
mean of the curvatures of the kth streamtube at the surfaces / and (8 + I), 

kk = (1 - a) Kk.d + aKk,L+l . (10) 

Perturbation theory (acoustic approximation) shows that this procedure is stable 
when a! > Q, unstable when a < 4, and neutrally stable when 01 = 4. In addition 
to this restriction in inviscid flow, the step length between surfaces must be chosen 
to be less than the separation between the streamlines k and k A 1 multiplied by 
a number of the order of (MS - 1)lj2 where A4 = u/a is the streamtube Mach 
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number. In viscous flow, the step length is also limited to a distance of the order of 
the separation times Re, = pu@y)/p the streamtube Reynolds number. These two 
stepping limitations are not independent of each other, as we shall subsequently 
show. 

In evaluating the streamline curvature, one wishes to use an expression that 
allows a reasonably accurate evaluation of the flow even when the values of the 
various state variables differ considerably from one tube to another, as in a flow 
behind a strongly curved shock or across a slip line. Since the computation time 
in flows with small viscous stresses is essentially inversely proportional to the square 
of the tube width, it is important to make the mesh size as large as allowed by the 
resolution desired in the results. In many hypersonic flows with slip lines and 
entropy layers, the entropy and density may each vary by an order of magnitude 
or more across a few tubes, while often flow velocity and curvature are relatively 
slowly varying. Equation (4) may be transformed to the form 

g + (27fr)8 g = 0, 

so that a useful representation of the curvature is 

Kk=- . 
W7d8 vlc+1 - Pkl 

. 
mkUklr,8 + mk+lUk+llr~+l 

P) 

(We adopt the convention that the fluid properties indexed by k are those of the 
streamtube bounded by the kth streamline.) If the velocity and curvature are con- 
stant across the flow, Eq. (12) would give the correct curvature even if the entire 
flow were represented as one streamtube. 

The streamlines are conveniently represented during a given step as arcs of 
circles, and the orthogonal surfaces are constructed by requiring that a line joining 
the intersections of adjacent streamlines with a given surface from an average right 
angle with the streamlines. The distance stepped and the streamtube areas are 
calculated along circular arcs with the proper tangencies at the end points. 

In viscous flows, the species continuity, streamwise momentum, and energy 
equations are expressed as follows: 

tik(ci,k,t+l - Ci.k,{) = &d8 dk[r8~i6~l~ (13) 

fik(uk.dt-l - Hk,d) + AtPk.G+l - Pk,d) = (2?r)8 dk[r8&], (14) 

and 

fik(Hk,t+l - Hk,d) = (2r)’ dk [r8 (UT + q + c h$J$) 8s]. (15) 
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Here the operator A, takes the difference in the bracketed quantities across the 
kth streamtube. These expressions can be arranged so that all energy, momentum, 
or species mass leaving a given tube reappears in an adjacent tube, and initially 
isoenergetic flows with unit Lewis and Prandtl number remain isoenergetic. In 
this manner we ensure that the total mass and energy of the flow remain constant. 
In the momentum equation, A, is the average streamtube area between surfaces C’ 
and k + 1. We have found that representing A by the arithmetic average produces 
little change in streamtube entropy after several hundred steps in inviscid calcula- 
tions, provided that the step size is controlled so that the change in area in a single 
step is less than about 10 %. This accuracy restriction on the step size is generally 
less severe than the stability restrictions except in highly divergent flows. 

It is desirable in evaluating the flux terms to employ expressions which keep the 
truncation errors as small as possible. The linear laws for the shear stress, heat 
flux, and (ordinary binary) species diffusion are 

and 

7 = -p@~PY), (16) 

q = --kWVy), (17) 

Ji = ,~,(W~Y). (18) 

Our object is to produce from the difference equations the same values of T, q, and 
Ji across a given streamline as we would have obtained from the differential 
equations. Two sources of error must be considered in passing to the finite- 
difference form: First, when the state properties differ by large amounts between 
two adjacent tubes, choosing a reasonable average value of the transport coefficient 
becomes difficult. Second, when streamtube areas or properties vary widely, it is 
hard to evaluate the gradients. The effects of these errors in the flux terms can be 
though of as producing a solution using erroneous transport properties, whose 
difference from the correct values is a function of position. 

These difficulties can be reduced, though not altogether eliminated, by intro- 
ducing the same transformation used in developing Eq. (12). (This transformation 
is similar to that of von Mises in boundary layer theory (6).) We may express Eq. 
(16), for example, as 

7 = (27rr)6 u@p) g . (19) 

The arguments previously introduced for hypersonic flows where u is not a rapidly 
varying function of position apply. Furthermore, the quantity (pp) is not a strongly 
varying function of composition or temperature in gases; assuming that @p) is 
constant is an assumption often invoked in compressible laminar boundary layer 
theory. Therefore, since the pressure in steady unshocked flow usually varies 
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moderately slowly in the direction normal to the flow, a suitable finite-difference 
expression for the shear stress is 

The barred term represents a mean transport coefficient whose value is in most 
situations rather insensitive to the averaging process employed. Usually ti varies 
less from tube to tube than does tube width, so Eq. (20) is superior to the direct 
dilIerencing of Eq. (16) in this respect also. Similar treatments can be applied to 
the fluxes of heat and species. Extension to situations in which multicomponent, 
pressure, and thermal diffusion are important is straightforward. 

STABILITY 

We noted previously that stability requires that the properties along a new ortho- 
gonal surface be calculated using the weighted mean of the curvature at the old 
and new surface. In this section we discuss this and other stability restrictions in 
more detail. 

The inviscid equations may be represented by the wave equation as a linear 
analog, 

vtt = a2vmz, (21) 

where a is the local wave velocity, here assumed constant, and subscripts now 
denote differentiation. 

In finite-difference form, to second-order accuracy 

v,(t + At) = vt(t) + a2 dt~,~(t + dt/2) + O(dP). 

We introduce the weighting factor 01 as follows: 

%I!& + &2) = “%,(f + 4 + [l - 4 %+(Q 

= 01 [vm + $ vrzt] + [l - 011 [viz, - + vzzt] + O(dt2), (23) 

where all derivatives are evaluated at t + dt/2. Then, substituting in Eq. (22) and 
rearranging slightly, 

1 
,zVtt = vt(t + 4 - vtw + O(42 

aut (24) 

=vz~(t+~)+df[a-;]v,,t(t+~)+O(.4t2). (25) 

581/3/3-4 
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Thus if 01 = 4, the term involving v,,~ drops out and the scheme is of second order 
accuracy. 

We now postulate a perturbation to the solution of the form 

21’ = exp(-iwt - iwx/a}; 

then, to terms of second-order accuracy, 

1 
F vi, = &s - 

1 
[ I 

6J3 
a--- Ati-v’. 2 a2 (26) 

Thus if 01 > 3, perturbations will be damped, while if (Y < $, they will be amplified 
as the calculation progresses. In this sense, [a - Q] may be thought of as an arti- 
ficial viscosity, although no dissipation can occur in the inviscid scheme because 
of the required constancy of entropy. Calculations with various test flows confirm 
that when GIL > Q, perturbations (sound waves) are damped. In practical calcula- 
tions, it is usually convenient and sometimes necessary to choose a: slightly greater 
than 3 in order to avoid perturbations introduced by small errors at mesh points 
or in boundary conditions. (A value of 01 = 0.55 is generally satisfactory.) In most 
situations, properties vary only slowly along streamlines-i.e., over many steps. 
In this case, setting 01 > Q results in little loss of accuracy even though the formal 
accuracy is reduced to first order. 

The second stability condition (step-size limitation) is developed in the usual 
way. In inviscid flow, the step size 6s is related to the streamtube width Sy by the 
von Neumann condition [ 11, 

6s < &(M” - l)l/2 sy. (27) 

Sample calculations in inviscid flows show that the allowed step size may be 
either greater or less than that allowed by Eq. (27), depending on local conditions, 
but is always nearly equal to it. It appears that the stability restriction for divergent 
flow is less stringent than that for convergent flow; the physical arguments involving 
Mach wave propagation across the mesh invoked to explain Eq. (27) would support 
this finding. In numerical work, we have tended to use a step size somewhat less 
than that of Eq. (27), with acceptable results. 

In boundary-layer flows, whose transport terms resemble those in the thin 
viscous layer approximation, a stability criterion of the form 

(28) 

restricts the stepping distance of explicit numerical procedures [7]. A similar restric- 
tion enters when our method is applied to supersonic viscous flows; however, an 
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interaction occurs between information propagation by Mach waves and diffusion 
which limits the step size to a value less than that allowed by either criterion alone. 
The case where Resv = (M2 - 1)lj2 has been examined, and we find that here 

6s < #4z - 1)112 Sy = :Re 6-y. (29) 

We should expect that as the viscosity is reduced, holding M constant, the stepping 
distance approaches that of Eq. (27), and that if the viscosity is greatly increased, 
in the absence of nonlinear effects, the stepping distance approaches that of Eq. (28). 
A general relation providing an interpolation formula containing these three 
cases is 

6s < & Sy[Re-l + (M2 - 1)-1/2]-1. (30) 

Using a step size slightly less than that of Eq. (30) allows a successful solution to 
viscous flow problems. It should be recognized that this procedure is not a con- 
clusive demonstration of a general stability relation. Since we have not derived a 
general stability criterion the only stability demonstration upon to us is an empirical 
one. Thus far, we have encountered no simple viscous flow problem for which a 
stepping distance 80 % of that given by Eq. (30) is unstable. However, when thermal 
and pressure diffusion are present, additional non-linear terms reduce the viscous 
stability limit; we still use Eq. (30) to choose the step size, but reduce the fraction 
by which the calculated stepping distance is multiplied to obtain the distance 
actually stepped. 

;  

L 
r  
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(al (b) (cl 
FIG. 3. Physical interpretation of stable stepping limits. 
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A straightforward physical argument may be introduced in support of Eq. (30). 
In Fig. 3(a) we consider an inviscid flow and show the Mach lines radiated from 
the intersections of the streamlines bounding the tube under consideration with the 
last calculated surface. The distance C1 to their intersection, as pointed out by von 
Neumann, is the upper limit to the stepping distance and is given by the equality 
in Eq. (27). In Fig. 3(b) we consider a purely diffusive flow and show the diffusion 
“fronts” propagating from the bounding points. (These fronts propagate linearly, 
instead of parabolically as in solutions to the differential equations, because of the 
form of the difference equation applied to a single step.) The distance 8, to their 
intersection is given by Eq. (29). Finally, in Fig. 3(c), both effects are shown together. 
Here we consider that a Mach wave propagates from the diffusion front, causing 
it to be felt to a greater distance than would be found in Fig. 3(b). The angle 8 
of the resulting distrubance is given by 

tan 13 = {[3(MZ - 1)‘j2]-l + Re-l}-l 

and the distance [a to the intersection of the disturbances propagated from the 
bounding points is given by Eq. (30). 

BOUNDARY CONDITIONS AND SHOCKS 

A number of different boundary conditions can be treated fairly easily with this 
method. Since a solid wall or a symmetry axis is a streamline, one only has to 
demand that the innermost or outermost streamline follow the prescribed path. 
The shape of the boundary may be described either by an analytical expression or 
by a series of tabulated points. In the latter case, it is desirable to represent the 
boundary segments as arcs, rather than as straight lines, to reduce the perturbations 
caused by discontinuities in boundary slope at the junction points. A free boundary 
is easily treated by specifying the pressure along the bounding streamline and ex- 
tending it in the usual way. When the external pressure is very low or zero, as in 
the case of expansion into a vacuum, the bounding streamline never quite turns to 
the limiting angle, although the limiting angle is more closely approached as the 
initial mesh near the edge is made smaller. 

We noted earlier that, for our original application, it was more convenient to 
compute shocked flows sequentially, treating the shocks as boundary discontinuities 
propagating into a known flow field. Most of our calculations of shocked flows are 
performed in this manner. Consider the exhaust plume flow field as an example: 
Here there are two shocks, one propagating into the atmosphere and the other 
into the undisturbed jet flow. The properties of the atmosphere are uniform on the 
scale of the plume, and the external velocity vector is parallel to the centerline. 
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The shock properties are obtained by requiring that the shock turn the flow through 
as angle such that the downstream flow parallels the nearest streamline currently 
being carried in the computation. The resulting pressure behind the shock acts 
upon the outside of the nearest streamtube, as in the free-boundary calculation. 
The shock is extended downstream using the average of the shock angles at the 
old and new surface for each step. A similar procedure is followed for the jet 
shock; in this case, however, it is necesary to interpolate the properties upstream 
of the shock from the previously computed undisturbed jet flow. 

Since the shock continually ingests the upstream flow, it becomes necessary 
from time to time to add a new streamtube to the flow being computed in the 
shocked region. The mass and enthalpy fluxes through the shock are summed from 

PREYIOUSLY COMPUTED FLOW 

FIG. 4. Construction of flow field (shock region). 

the last point at which a streamtube was added; when the mass flux approximates 
the average of those in the streamtubes then present in the flow, a new tube is added. 
The new tube’s mass and enthalpy fluxes are those entering the shock, and the tube 
pressure is the pressure just behind the shock. In order to keep the number of 
streamtubes within reasonable bounds when computing a growing flow, it is 
necessary from time to time to combine tubes. We do this in a fashion which pre- 
serves bounding streamline angle, streamtube area at the given normal surface, 
mass and energy fluxes across the surface, and force exerted on the surface by the 
flow. The combination routine does not preserve total entropy flux when the 
tubes being combined have different state properties. The streamline pattern 
which results from the computation of a shocked region is shown in Fig. 4. 

If the method is applied to a shocked region in which the shock is not treated 
by the above methods, the streamline pattern shown in Fig. 5 results. As in the 
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one-dimensional, unsteady calculation without artificial viscosity, the flow 
develops oscillations which (von Neumann pointed out) can be regarded as the 
calculation’s attempt to simulate the conversion of kinetic energy to heat in the 
shock [2]. We did not note much improvement when Richtmeyer’s artificial viscos- 
ity [I ] and range of parameters were included in the calculation. Since (a - 4) is 
proportional to a sort of artificial viscosity, the oscillations will eventually damp 

FIG. 5. Streamline pattern resulting from ignoring shock formation. 

out if the calculation is carried far enough downstream. However, there is no 
indication that the far downstream flow has the proper state properties, although 
the flux quantities must be reasonable. In some cases, where the strongly shocked 
region is not of much interest, we have run calculations in which we simply march 
through it with low resolution in order to get at other parts of the flow: an example 
is shown in the next section. 

SAMPLE CALCULATIONS 

The areas of application of the method to inviscid flows are essentially equivalent 
to those of the method of characteristics. We have used it to compute flows in 
supersonic nozzles, of exhaust plumes and around supersonic bodies. 

A typical axially symmetric nozzle flow is shown in Fig. 6. The heavy lines are 
streamlines, the light lines are isobars (shown as dotted lines where interpolation 
of the computer printout, which was requested only every 5 steps, is difficult). The 
coordinates are reduced by the throat radius. Only about 2 of the computed stream- 
lines are shown. The nozzle contour is a graphical approximation to an optimum- 
thrust contour. The calculation is initiated just downstream of the throat, assuming 
a slightly supersonic source-like flow there. The bends in the isobars indicate the 
region of influence of the contoured section; the small wiggles are the result of 
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FIG. 6. Nozzle flow (y = 1.4, PO = 23.8, A/A* = 60). 
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FIG. 7. Nozzle exit surface pressure profiles for different numbe.rs of streamtubes in cal- 
culation. 
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slight irregularities in the nozzle contour as well as of the discontinuity in wall 
curvatures at the point where the contoured section joins the uniformly curved 
throat section [8]. This junction point induces a weak shock in the flow, which 
eventually strengthens as it approaches the axis. The isentropic calculation appears 
adequate for the region shown. This nozzle flow allows a good test of the contention 
that the flow results should be reasonable even if only a small number of tubes are 
employed. Figure 7 shows the pressure profile across the normal surface at the 
nozzle exit for 1, 2, 4, and 20 streamtubes in the calculation. With four tubes, the 
flow is reasonably well described; a line faired through the midpoints of these four 
tubes lies quite close to the results of the 20-tube calculation. 

The undisturbed (vacuum) exhaust plume of this engine near the nozzle exit is 
shown in Fig. 8. The region at the lower right shows the typical streamline pattern 
which resultswhen a shocked region is calculated without allowing fortheshock. No 
attempt has been made to show the computed isobars here; they oscillate wildly. 
This shock system is induced by the nozzle,andincludes not onlythe junction shock, 
but also a “focusing” shock consisting of the coalescence of many small compres- 
sion waves induced by the contoured section and the reflections of these shocks 
from the axis. This reflection is actually irregular, with the formation of a Mach 
disc and a region of subsonic flow [9]. We march through this region by making 
the innermost streamtube large enough so that the flow within it remains, on the 

L 30, / / /,’ /’ / 

FIG. 8. Exhaust plume flow (near exit) into a vacuum; nozzle flow of Fig. 6. 
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average, supersonic. The percentage of the total mass flow which is strongly shocked 
is small, and the calculation satisfactorily describes the rest of the flow. 

A comparison of two inviscid calculations of a low-altitude exhaust plume is 
still air is shown in Figs. 9 and 10. One calculation uses the method of 
characteristics [lo] and the other uses our method. The jet shock and the slip line 
or boundary between jet and atmosphere is shown in Fig. 9. The pressure distribu- 

x/re 

FIG. 9. Comparison of finite-difference and characteristics calculations ; shock and boundary 
location. 
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FIG. 10. Comparison of finite-difference and characteristics calculations; pressure profile 
along surface “A” of Fig. 9. 
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FIG. 11. High-altitude exhaust plume flow field; inviscid calculation. 

tion across the surface “A” (of Fig. 9) normal to the flow streamline is shown in 
Fig. 10. The two calculations agree very well. 

An inviscid high-altitude plume is shown in Fig. 11. The method of characteristics 
will not handle this problem without considerable effort. The air shock layer in the 
nose region is subsonic; an approximate method was used to compute the flow 
there to a distance slightly beyond the sonic line, which extends to a distance 
x/d* = 0.007 from the exit plane. (Here /* is a characteristic scaling length for 
the high-altitude plume.) The entire jet flow, and the combined shock layer down- 
stream, was computed with the present method. It has been shown that the 
computed exhaust-plume boundary location is very close to that given by approxim- 
ate calculations involving a force balance along the boundary [l 11. 

Calculations of the high-altitude plume with viscous transport have been 
presented elsewhere, both for binary diffusion and multicomponent diffusion 
IS, 121. Applications to flow about a body have also been made [13]. 

CONCLUDING REMARKS 

This method has been found to give satisfactory answers to a variety of problems 
involving supersonic and hypersonic flow fields. As is probably true of all numerical 
techniques, it is better suited to some problems than to others. In general terms,we 
believe that it is most reasonably applied to problems where moderate accuracy 
and physical reasonableness are desired in the answers, rather than to problems 
which require high precision in quantities such as shock location or wall pressure. 

The question naturally arises, whether this method could be easily adapted to 
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three-dimensional steady flow problems. On the basis of a cursory investigation, 
we feel that it is in some ways less suitable than Eulerian or particle/fluid-in-cell 
techniques, since the three-dimensional surface normal to the flow streamline is 
difficult to construct and element contortion problems, like those occurring in 
two-dimensional, time-dependent Lagrangian calculations, can develop. Problems 
are often found in extending numerical techniques which rely entirely on a mesh 
which must be located in space as part of the calculation to three space dimensions. 
For example, efforts to develop a general three-dimensional method of character- 
istics have been under way for several years, but the number of problems success- 
fully treated is, though growing, still relatively small. Many of the same dficulties, 
which arise entirely from the increased geometrical and topological complexity, 
also apply to our method. However, it is possible that some of these problems may 
seem more difficult than they really are, and the application of the method to some 
straightforward three-dimensional problem should probably be examined. 

APPENDIX. NOMENCLATURE 

A Streamtube area 
a Acoustic or wave velocity 
c Species mass fraction 

012 Binary d8usion coefficient 
H Total enthalpy 
h Static enthalpy 

hi Partial specific enthalpy 
J Mass flux across streamlines 
k Thermal conductivity 

M Mach number 
Gz Mass flow rate 
P Pressure 
q Heat flux across streamlines 
r Distance normal to reference plane or symmetry axis 
S Entropy 
s Distance along streamline 
T Temperature 
u Velocity 
y Distance along surface orthogonal to streamlines 
(Y Weighting factor 
d Difference operator 
K Streamline curvature 
p Viscosity 
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p Density 
T Shear stress (momentum flux across streamlines) 
qz Flow angle 

Subscripts and Exponents 

i Species index 
k Streamline or streamtube index 
1 Orthogonal surface index 
6 Metric exponent (= 0 for 2 -D, = 1 for axially symmetric) 
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